Nearest neighbors distance ratio open-set classifier
نویسندگان
چکیده
منابع مشابه
NS-k-NN: Neutrosophic Set-Based k-Nearest Neighbors Classifier
k-nearest neighbors (k-NN), which is known to be a simple and efficient approach, is a non-parametric supervised classifier. It aims to determine the class label of an unknown sample by its k-nearest neighbors that are stored in a training set. The k-nearest neighbors are determined based on some distance functions. Although k-NN produces successful results, there have been some extensions for ...
متن کاملDISTANCE FUNCTIONS AND ATTRIBUTE WEIGHTING IN A k-NEAREST NEIGHBORS CLASSIFIER WITH AN ECOLOGICAL APPLICATION∗
To assess environmental health of a stream, field, or other ecological object, characteristics of that object should be compared to a set of reference objects known to be healthy. Using streams as objects, we propose a k-nearest neighbors algorithm (Bates Prins and Smith, 2006) to find the appropriate set of reference streams to use as a comparison set for any given test stream. Previously, inv...
متن کاملLocal generalized quadratic distance metrics: application to the k-nearest neighbors classifier
Finding the set of nearest neighbors for a query point of interest appears in a variety of algorithms for machine learning and pattern recognition. Examples include k nearest neighbor classification, information retrieval, case-based reasoning, manifold learning, and nonlinear dimensionality reduction. In this work, we propose a new approach for determining a distance metric from the data for f...
متن کاملK-Nearest Neighbors Relevance Annotation Model for Distance Education
With the rapid development of Internet technologies, distance education has become a popular educational mode. In this paper, the authors propose an online image automatic annotation distance education system, which could effectively help children learn interrelations between image content and corresponding keywords. Image automatic annotation is a significant problem in image retrieval and ima...
متن کاملOn Finding Nearest Neighbors in a Set of Compressible Signals
Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet common example is the problem of finding those signals in a database that are closest to a query. In this paper, we tackle this problem by restricting our attention to a special class of signals that have a sparse approximation over a basis or a redundant dictionary. We take advantage of sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2016
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-016-5610-8